Below are a selection of scientific peer-reviewed papers which have been published relating to research and development carried out at EBS.

Tryptophan and Non-Tryptophan Fluorescence of the Eye Lens Proteins Provides Diagnostics of Cataract at the Molecular Level

Gakamsky, A, Duncan, R R, Howarth, N M, Dhillon, B, Buttenschön, K K, Daly, D J, & Gakamsky, D

Abstract: The chemical nature of the non-tryptophan (non-Trp) fluorescence of porcine and human eye lens proteins was identified by Mass Spectrometry (MS) and Fluorescence Steady-State and Lifetime spectroscopy as post-translational modifications (PTM) of Trp and Arg amino acid residues. Fluorescence intensity profiles measured along the optical axis of human eye lenses with age-related nuclear cataract showed increasing concentration of fluorescent PTM towards the lens centre in accord with the increased optical density in the lens nucleolus. Significant differences between fluorescence lifetimes of “free” Trp derivatives hydroxytryptophan (OH-Trp), N-formylkynurenine (NFK), kynurenine (Kyn), hydroxykynurenine (OH-Kyn) and their residues were observed. Notably, the lifetime constants of these residues in a model peptide were considerably greater than those of their “free” counterparts. Fluorescence of Trp, its derivatives and argpyrimidine (ArgP) can be excited at the red edge of the Trp absorption band which allows normalisation of the emission spectra of these PTMs to the fluorescence intensity of Trp, to determine semi-quantitatively their concentration. We show that the cumulative fraction of OH-Trp, NFK and ArgP emission dominates the total fluorescence spectrum in both emulsified post-surgical human cataract protein samples, as well as in whole lenses and that this correlates strongly with cataract grade and age.

DOI: 10.1038/srep40375

Non-Invasive Bleaching of the Human Lens by Femtosecond Laser Photolysis

Kessel L, Eskildsen L, van der Poel M, & Larsen M

Background: Globally, cataract is the leading cause of blindness and impaired vision. Cataract surgery is an attractive treatment option but it remains unavailable in sufficient quantity for the vast majority of the world population living in areas without access to specialized health care. Reducing blindness from cataract requires solutions that can be applied outside operating theatres. Cataract is a protein conformational disease characterized by accumulation of light absorbing, fluorescent and scattering protein aggregates. The aim of the study was to investigate whether these compounds were susceptible to photobleaching by a non-invasive procedure and whether this would lead to optical rejuvenation of the lens.
Methodology/Principal Findings: Nine human donor lenses were treated with an 800 nm infra-red femtosecond pulsed laser in a treatment zone measuring 16160.52 mm. After laser treatment the age-induced yellow discoloration of the lens was markedly reduced and the transmission of light was increased corresponding to an optical rejuvenation of 3 to 7 years.
Conclusions/Significance: The results demonstrate that the age-induced yellowing of the human lens can be bleached by a non-invasive procedure based on femtosecond laser photolysis. Cataract is a disease associated with old age. At the current technological stage, lens aging is delayed but with a treatment covering the entire lens volume complete optical rejuvenation is expected. Thus, femtosecond photolysis has the potential clinical value of replacing invasive cataract surgery by a non-invasive treatment modality that can be placed in mobile units, thus breaking down many of the barriers impeding access to treatment in remote and poor regions of the world.


Action Spectrum for Photobleaching of Human Lenses by Short Wavelength Visible Irradiation

Kessel L, & Larsen M


Purpose: Cataract is the world-leading cause of blindness. In search for a new treatment of cataract we have found that the yellow discolouration of aged human lenses can be photobleached using a non-invasive, infra-red, femtosecond laser treatment. These results were presented in an earlier PlosOne publication. The objective of the study was to characterize the single-photon photobleaching action spectrum of the aged human lens in vitro.

Methods: Ninety-one human donor lenses were irradiated with continuous wave laser light at 375, 405, 420, 445, 457 or 473 nm. Photobleaching was monitored by photography and transmission measurements.

Results: The action spectrum peaked at 420 nm followed by, in order of decreasing effect, 445, 457, 473, 405 and 375 nm. Younger and less absorbent lenses showed smaller changes than older and more absorbent lenses. There was a dose-dependent increase in lens transmission with increasing laser irradiation.

Conclusions: For a 75 year old lens an effect corresponding to elimination of 15 years or more of optical ageing was obtained. This study of the spectral characteristics and intensity needed to bleach the human lens with single-photon laser effects found an action-spectrum peak at 420 nm tailing gradually off toward longer wavelengths and more steeply toward shorter wavelengths. The results may be used to guide experiments with two-photon bleaching.